Understanding Generative Al Trustworthiness

Jingruo Chen, Elisabeth Kam, Zhuoer Lyu, Tung-Yen Wang, Xiaohan Wang, Yahui Zhang

Pages marked with an asterisk (*) next to the title have been authored or completed by Jingruo Chen.

Agenda

- 01 Introduction
- 02 Background
- 03 Methodology
- 04 Results
- 05 Recommendations
- 06 Limitations
- 07 Future study

01 Introduction

Introduction

Our project

This project works with Google cloud, aiming to evaluate the level of "trust" that customers have in GenAl products. We aim to find metrics representing customer "trust" in a GenAl product, how that metric differs across cohorts of customers, and the design factors contributing to that trust through survey data analysis.

Our team

User researchers:

Jingruo Chen, Zhuoer Lyu, Yahui Zhang

Data analysts:

Elisabeth Kam, Tung-Yen Wang, Xiaohan Wang

Executive Summary

We explored the multifaceted dimensions of customer trust in Generative AI (GenAI) in this study with methodologies including a sophisticated survey and interviews tailored to target specific user groups, including student developers and full-time employees, to identify and analyze critical trustworthy factors.

Our findings reveal that **Privacy**, **Accuracy**, **Reliability**, **Objectivity**, and **Security** are universally valued as the most important factors when evaluating GenAl trustworthiness. In addition, **Privacy** and **Accuracy** stand out among these five factors.

Based on the factors, we further provide recommendations on enhancement of user trust in GenAl products. Acknowledging its limitations in terms of potential biases and generalizability, this research provides foundational insights for future investigations into the trustworthiness of GenAl products and the impact of design elements on user preferences on GenAl systems.

02 Background

User trust matters for GenAl products*

Trust matters in organizations

User trust declines in the past year

72%

of executives believe GenAl is key to fostering stakeholder trust

82% > 73% and 65% > 51% of business buyers

of consumers

are receptive to AI enhancing their experiences, declining since 2022

45%

warn of declining organizational trust in GenAl without proper risk management

68%

of customers emphasize increased Al advancements heighten the need for company trustworthiness

Emphasizing younger generation users*

65% →

of generative AI users are Millennials or Gen Z

70% →

of Gen Z report using related technology

61% of GenZ and 56% of Millennials →

are aware of how AI works compared to only 24% of GenX who said the same

Product categories: Customer Support, Idea Generation, Coding Assistance*

Customer Support

GenAl chatbots that can **handle customer inquiries**, automate responses, and assist with support issues

Idea Generation

GenAl products that **generate creative and innovative ideas based on user prompts**, such as OpenAl GPT, IBM Watson Discovery, Google Bard.

Coding Assistance

GenAl products that **provide intelligent code suggestions**, **autocompletion**, **and assistance during the coding process**, such as GitHub Copilot and Microsoft Visual Studio IntelliCode.

Inherent difference between trust and trustworthiness

Trusting vs. Trustworthy Behaviors

Trust: a **subjective** response that can vary even when trustworthy factors are consistent

Trustworthiness: **measurable attributes** that an AI system presents (better indicators)

Challenges in Measuring Al Trustworthiness

- No standard criteria for Al trustworthiness
- Generative Al's rapid evolution complicates trustworthiness assessment
- Lack of measures impairs trust-building strategies

Source: Measuring Trust

Ten factors to break down the notion of trustworthiness*

Accuracy

The degree to which an AI system produces correct outputs or predictions based on the given inputs or data.

Accountability

The responsibility and answerability of the AI system for its actions and decisions.

Objectivity

The impartiality of an AI system, ensuring that its decisions are free from biases and are based solely on the data it processes.

Resilience

The ability to maintain its performance and recover quickly from disruptions or adversities.

Safety

The condition of the system operating without causing unacceptable risk of physical injury or damage to the health of people.

Explainability/Transparency

The details and reasons a model gives to make its functioning clear or easy to understand.

Reliability/Robustness

The ability of a system to perform its required functions under stated conditions for a specified period of time.

Privacy

The ability to protect and handle user data without compromising the confidentiality and privacy of the user.

Security

The protection of the AI system from unauthorized access, breaches, and potential cyber threats.

Anthropomorphism

The anthropomorphic characteristic of AI that contains features ranging from physical appearance to various mental states that characterize humans.

Source: <u>Trust and Artificial Intelligence</u>

03 Methodology

Survey*

Why?

69.56% of studies create and employ their own questionnaires to assess user trust in generative AI products.

Advantages:

Broad Data Collection, Standardized Measurement, Quantitative Analysis, Anonymity and Privacy

How?

Experiences with GenAl products

Ranking statements of trustworthy factors

Experiences with Cloud-based products

Demographic questions

Pre-test

Modify the survey based on feedback from **16 users**

Distribution

- Distributed through Qualtrics for 2 weeks
- Student developers, Google employees
- 108 valid responses

Survey*

Design:

- 10 trustworthy factors
- 3 statements per factor
- 10 factors per trial
- 1 statement per factor in each trial
- 3 trials in total

Instruction for participants:

Drag and order statements by how much they impact your trust in the GenAl product, from most (1) to least (10)

Data Analysis

Overall Raw Scores

Overview of participant usage, overall and subgroups top factors, and statement scores.

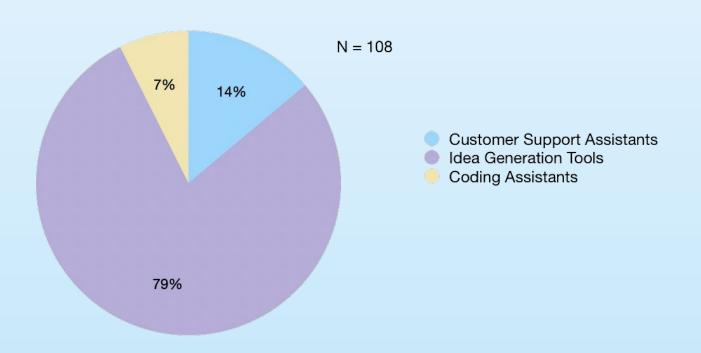
Post Hoc Test

Conducted to further investigate the significant differences in specific pairwise comparison among groups.

One-Way ANOVA

Performed to evaluate if there are significant differences between the means of the 10 trustworthy factors.

Cohen's Kappa


Employed to assess inter-rater reliability among user trials, gauging the degree of homogeneity in ratings across a group of evaluators.

Interview

Why? Scope How? Validation of survey result Six participants -Semi-structured Interviews Two for each category conducted online or In-person **Details and Depth Mixture of Professionals** Survey Walk through and and students follow-up questions **Gathering qualitative insights** 45 minutes **Questions regarding design Identifying trends** factors and user behaviour

Results

Majority most frequently use Idea Generation Tools

Top 5 factors emerge while scores are overall close

Ranking Score Calculation:

- Higher ranking assigned with higher score in calculation
- E.g. factor ranked 1st = 10 points

Top five factors:

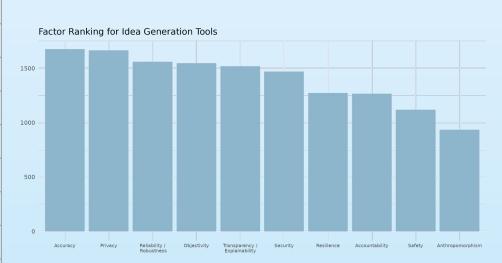
- 1. Privacy
- 2. Accuracy
- 3. Reliability/Robustness
- 4. Objectivity
- 5. Security

Consistent preference for top 5 factors across categories

■ Usage for Coding Assistants

N=8

- The same five factors are still largely favored across the three groups
- Accuracy and Privacy stand out in all 3 subgroups
- Transparency/Explainability is relatively more important to idea generation
- **Security** is relatively more important to customer support
- Reliability/Robustness is relatively more important to coding assistants



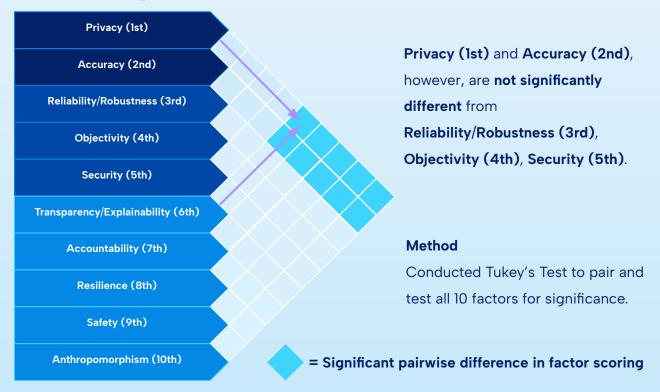
■ Usage for Customer Support Assistants ■ Usage for Idea Generation Tools

Comparison of Subgroup Factor Scores

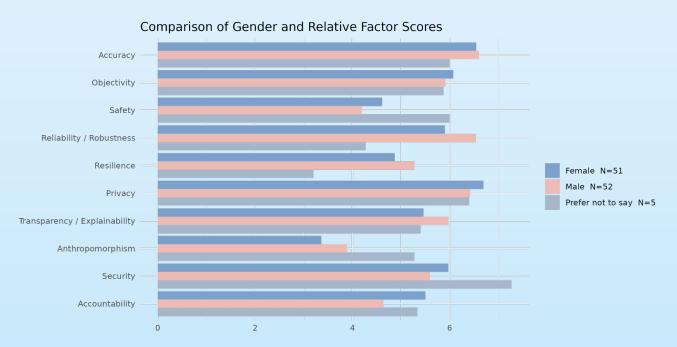
Idea Generation has most impact on overall ranking

Factors	Ranking	Score
Accuracy	1	1676
Privacy	2	1664
Reliability / Robustness	3	1560
Objectivity	4	1546
Transparency / Explainability	5	1519
Security	6	1469
Resilience	7	1273
Accountability	8	1265
Safety	9	1119
Anthropomorphism	10	934

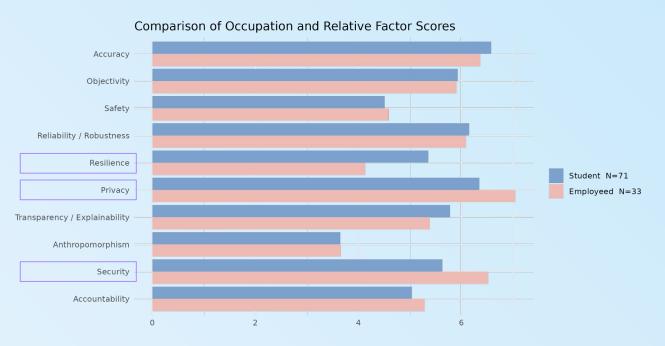
Significant difference in factor scoring in overall comparison and Idea Generation Tools

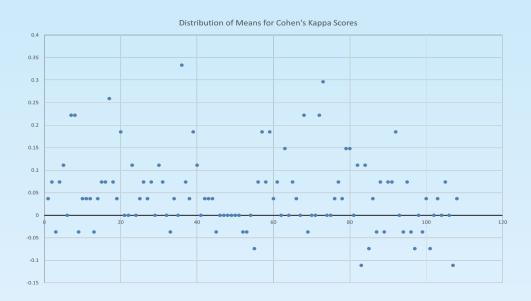

One-Way ANOVA Table of p-values; alpha = 0.05

	All 10 Factors	Top 5 Factors	
All 3 Categories	4.992e ⁻⁴³ ***	0.012**	
Customer Support Assistants	0.841	0.945	
Idea Generation Tools	2.704e ⁻¹¹ ***	0.676	
Coding Assistants	0.997	0.998	


Privacy and Accuracy stood out in Post Hoc tests

Only Privacy (1st) and
Accuracy (2nd) differ
significantly from
Transparency/Explaina
bility (6th),
Accountability (7th),
Resilience (8th), Safety
(9th),
Anthropomorphism


(10th).


No significant divide of trustworthy factors between males and females

Full-time employees value Privacy and Security more while students value Resilience more

Agreement within a user's response is at most fair

X-axis: user number, e.g. 20 = 20th user

Y-axis: scale of Kappa values

Higher value = stronger agreement

Lower value = weaker agreement

- As shown by the dark line, most values fall around 0, indicating that agreement is due to chance.
- At best, agreement between a participant and themselves is fair.
- Overall, varying degrees of preferences exist within the same factor for a single user.

Statement-level analysis aligns with factor-level analysis

Factors	Statements	Score	Average Rating Score
Accuracy	Checks its own answers carefully.	766	7.10
Privacy	Keeps my interactions confidential.	741	6.86
Objectivity	Answers using only facts and logic.	ts and logic. 731	
Transparency/Explainability	Shows step-by-step solution breakdown.	730	6.76
Security	Protects my personal data from hackers.	721	6.68
Reliability/Robustness	Works well under various conditions.	719	6.67
Privacy	Asks for my consent before data collection.	693	6.42
Accuracy	Gives clear answers to vague questions.	692	6.41
Privacy	Lets me manage and delete my data.	688	6.37
Resilience	Corrects errors quickly when pointed out.	669	6.19

Subgroup statement ranking aligns with overall ranking

Accuracy: The statements chosen are both within the top 10 statements; the "Idea Generation" group focuses more on correctness while other groups focus more on clarity.

Privacy: The same applies here; the "Coding Assistant" group focuses more on data privacy while other groups focus more on interaction privacy.

Subgroup	Factor	Top 1 Statement of that Factor	Statement Subgroup Ranking	Average Rating Score
Idea Generation	Accuracy	Checks its own answers carefully.	1	7.26
	Privacy	Keeps my interactions confidential.	4	6.86
Customer Support	Accuracy	Gives clear answers to vague questions.	3	7.07
	Privacy	Keeps my interactions confidential.	2	7.27
Coding Assistant	Accuracy	Gives clear answers to vague questions.	4	6.63
	Privacy	Asks for my consent before data collection.	3	6.75

Individual statements provide further insights

Users focus more on solution breakdown when generating ideas, personal data security when asking for customer support, and smooth operations when coding.

Subgroup	Factors	Statements	Statement Subgroup Ranking	Average Rating Score
ldea Generation	Transparency/ Explainability	Shows step-by-step solution breakdown.	2	7.15
Customer Support	Security	Protects my personal data from hackers.	1	7.33
Coding Assistant	Reliability/Robustness	Works well under various conditions.	2	6.88

05 Recommendation


Conclusion*

- Top five factors would be the most important ones when evaluating GenAl product trustworthiness:
 Privacy, Accuracy, Reliability/Robustness, Objectivity, and Security
- Top two factors stand out from the five: Privacy and Accuracy

Privacy*

Statement ranking

Data analysis insights

- More important for customer support
- Employees value privacy more than students

Industry practices

OpenAl ChatGPT: has an option for users to turn off Chat history & training

"Privacy is not that important to us, but if I speak from the perspective of a student, but if I am, for example, making my personal project, then I might set it a lot higher."

– Student, 22 y/o

"I saw recent news about how

GenAl generates images that looks like a particular user because the user fed his own image. This makes me worry."

- Student, 26 y/o

Recommendations

Give users control over their data by providing clear options for opting in or out of data collection, personalized experiences, and sharing of their information.

Accuracy* Statement ranking Checks its own answers 1st carefully Gives clear answers to vague 8th questions Lets me verify its answers 11th

Data analysis insights

- High across all categories
- Chosen as the top by students

Industry practices

 Grammarly: allows users to ignore suggestions and adjusts the system to improve accuracy and relevance

Interview quotes

"Check its own answers carefully is the most important because all I care about is that the product can help me most effectively."

- Student, 24 y/o

"Other factors do not matter at all when I am urgent in completing the task, as long as it can provide the correct answer."

- Student, 22 y/o

"

Recommendations

Let users verify its answers and utilize user feedbacks, provides an indication of the system's confidence level for each generated response, marketing accuracy feature with product iterations.

Reliability/Robustness*

Data analysis insights

- Important for coding assistance
- Students value privacy more than employees

Industry practices

 Oracle Database: regularly verifies data integrity, ensuring that the database remains reliable over time

Interview quotes

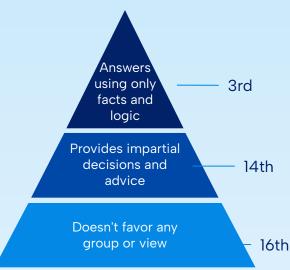
"I ranked this first because it is important that the system can handle unexpected situations and changes of prompts."

- Student, 24 y/o

"This is very crucial when I am using Copilot. It should be able to autocomplete different types of functions or algorithms."

- Student, 23 y/o

"I care about the effectiveness of the product the most in terms of completing tasks"


- Student, 26 y/o

Provides clear error messages to users, suggests alternative solutions for errors, enable the system to recognize and adapt to different prompt variations, regularly verify the integrity of the data, conduct extensive stress testing to evaluate the system's performance.

Objectivity*

Statement ranking

Data analysis insights

- Most important for Idea generation tools
- Equally important for both students and employees

Industry practices

 IBM Watson: offers features to monitor Al models for bias, fairness, and trust, adding transparency to how Al models make decisions

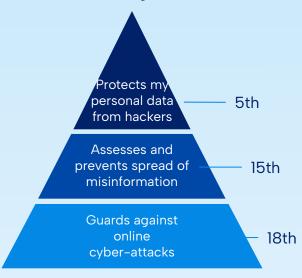
Interview quotes

"I don't care about impartial decisions or favoring over groups as I am coding, not asking for opinions."

- Student, 23 y/o

"I ranked this statement first because I want the answer to be accurate, I do not want biased answers when I am asking a question."

- Student, 25 y/o



Recommendations

Transparently disclose the sources of information used by the generative AI product, provide explanations, reasoning or sources for its answers, conduct regular evaluation and auditing of the system's performance to identify and mitigate any biases.

Security*

Statement ranking

Data analysis insights

- Most important for Customer support assistant tools
- More important for employees than students

Industry practices

 AWS: has identity and access management, data protection, privacy and compliance, application security, and threat modeling

Interview quotes

"Protection of my personal data is important as leaking it has caused me so many troubles, like phone scams. But online cyber-attacks don't seem like something that will actually happen to me."

- Student, 23 y/o

Recommendations

Use cases for emerging defense techniques, Alignment of LLM-enabled code generation to secure-coding practices, Repository and service of state-of-the-art attacks and defenses.

"

Limitations

Limitations

Survey

- Misinterpretation of trustworthy statements
- Limited behavioral Insights
- Sampling bias

Data Analysis

- Limited generalizability and statistical significance
- Factors overlapping in meanings

Interview

- Confirmation bias
- Limited number of participants

07 Future Study

Future Study

Customer Support

 Examine preferences for human-like features in design

Coding assistance

 Explore varying coding approaches: using AI tools like ChatGPT vs. GitHub Copilot

Design Factors

 Analyze how design factors affect user choices: easy-to-use interfaces, direct solutions, progressive updates, multi-platform compatibility, etc.

Market Opportunities

- Assess coding assistance specific to platforms like Colab
- Evaluate Google's edge in web browsing and information sourcing

Thank you!

Feel free to reach out to us with any questions:

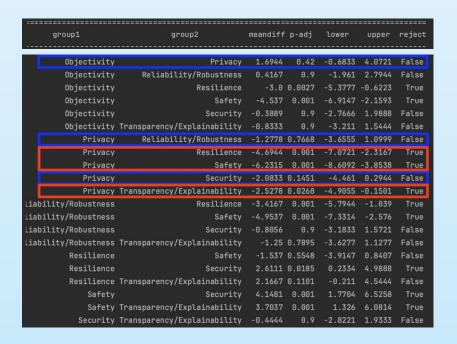
Jingruo Chen (jc3564@cornell.edu) Elisabeth Kam (etk45@cornell.edu)

Zhuoer Lyu (zl899@cornell.edu)

Tung-Yen Wang (tw565@cornell.edu)

Xiaohan Wang (xw642@cornell.edu)

Yahui Zhang (yz2936@cornell.edu)



Appendix

Post-Hoc Results

Multiple Comparison of Means - Tukey HSD, FWER=0.05 group2 Accountability Accountability Anthropomorphism -4.1111 0.001 -6.4888 -1.7334 True Accountability Objectivity 2.7315 0.0106 0.3538 5.1092 True Accountability 4.4259 0.001 2.0482 6.8036 True Accountability 3.1481 0.0012 Accountability 0.9 -2.6462 2.1092 False Accountability -1.8056 0.3221 -4.1833 0.5721 Accountability 2.3426 0.0575 -0.0351 4.7203 False Accountability Transparency/Explainability Anthropomorphism -8.5278 0.001 -10.9055 -6.1501 True Accuracy -1.6852 0.4284 -4.0629 0.6925 False Accuracy Privacy 0.0093 0.9 -2.3684 2.387 False Accuracy Reliability/Robustness -1.2685 0.7743 -3.6462 1.1092 False Accuracy Resilience -4.6852 0.001 -7.0629 -2.3075 True Safety -6.2222 0.001 -8.5999 -3.8445 True Security -2.0741 0.1496 -4.4518 0.3036 False Accuracy Transparency/Explainability -2.5185 0.0279 -4.8962 -0.1408 True 4.4649 9.2203 True 8.537 0.001 6.1593 10.9147 True Anthropomorphism Reliability/Robustness Anthropomorphism Resilience 3.8426 0.001 1.4649 6.2203 2.3056 0.0665 -0.0721 4.6833 False Anthropomorphism Security 6.4537 0.001 4.076 8.8314 Anthropomorphism Transparency/Explainability 6.0093 0.001 3.6316 8.387

Red = Reject Null Blue = Failed to Reject

Statements

Factors	Statements	Overall	Average Rating Score	Group 1	Percentage of Overall	Average Rating Score	Group 2	Percentage of Overall	Average Rating Score	Group 3	Percentage of Overall	Average Rating Score
Accuracy	Checks its own answers carefully.	766	7.092592593	98	0.127937337	6.533333333	617	0.805483029	7.258823529	51	0.066579634	6.375
Privacy	Keeps my interactions confidential.	741	6.861111111	109	0.147098516	7.266666667	583	0.786774629	6.858823529	49	0.066126856	6.125
Objectivity	Answers using only facts and logic.	731	6.768518519	86	0.117647059	5.733333333	601	0.822161423	7.070588235	44	0.060191518	5.5
Transparency/Explainability	Shows step-by-step solution breakdown.	730	6.759259259	84	0.115068493	5.6	608	0.832876712	7.152941176	38	0.052054795	4.75
Security	Protects my personal data from hackers.	721	6.675925926	110	0.152565881	7.333333333	551	0.764216366	6.482352941	60	0.083217753	7.5
Reliability/Robustness	Works well under various conditions.	719	6.657407407	97	0.134909597	6.466666667	567	0.788595271	6.670588235	55	0.076495132	6.875
Privacy	Asks for my consent before data collection.	693	6.416666667	103	0.148629149	6.86666667	536	0.773448773	6.305882353	54	0.077922078	6.75
Accuracy	Gives clear answers to vague questions.	692	6.407407407	106	0.153179191	7.066666667	533	0.770231214	6.270588235	53	0.076589595	6.625
Privacy	Lets me manage and delete my data.	688	6.37037037	93	0.135174419	6.2	545	0.792151163	6.411764706	50	0.072674419	6.25
Resilience	Corrects errors quickly when pointed out.	669	6.19444444	83	0.12406577	5.533333333	538	0.804185351	6.329411765	48	0.071748879	6
Accuracy	Lets me verify its answers.	663	6.138888889	90	0.135746606	6	526	0.793363499	6.188235294	47	0.070889894	5.875
Reliability/Robustness	Adapts well to unexpected data.	643	5.953703704	80	0.124416796	5.333333333	515	0.800933126	6.058823529	48	0.074650078	6
Reliability/Robustness	Handles errors without major disruptions.	622	5.759259259	92	0.147909968	6.133333333	478	0.768488746	5.623529412	52	0.083601286	6.5
Objectivity	Provides impartial decisions and advice.	620	5.740740741	74	0.119354839	4.933333333	489	0.788709677	5.752941176	57	0.091935484	7.125
Security	Assesses and prevents spread of misinformation.	591	5.472222222	92	0.155668359	6.133333333	462	0.781725888	5.435294118	37	0.062605753	4.625
Objectivity	Doesn't favor any group or view.	588	5.44444444	91	0.154761905	6.066666667	456	0.775510204	5.364705882	41	0.069727891	5.125
Accountability	Is overseen by a responsible authority.	586	5.425925926	82	0.139931741	5.466666667	468	0.798634812	5.505882353	36	0.061433447	4.5
Security	Guards against online cyber-attacks.	585	5.416666667	93	0.158974359	6.2	456	0.779487179	5.364705882	36	0.061538462	4.5
Transparency/Explainability	Translates technical terms to simple language.	580	5.37037037	69	0.118965517	4.6	472	0.813793103	5.552941176	39	0.067241379	4.875
Accountability	Follows laws for AI-generated content.	568	5.259259259	92	0.161971831	6.133333333	430	0.757042254	5.058823529	46	0.080985915	5.75
Resilience	Works well during high-demand times.	556	5.148148148	73	0.131294964	4.866666667	432	0.776978417	5.082352941	51	0.091726619	6.375
Safety	Warns about risky answers.	545	5.046296296	85	0.155963303	5.666666667	426	0.781651376	5.011764706	34	0.062385321	4.25
Transparency/Explainability	Shares its training goals and processes.	539	4.990740741	60	0.111317254	4	439	0.814471243	5.164705882	40	0.074211503	5
Accountability	Allows me to report its malfunctions.	490	4.537037037	76	0.155102041	5.066666667	367	0.748979592	4.317647059	47	0.095918367	5.875
Anthropomorphism	Makes judgments similar to human ethics.	484	4.481481481	82	0.169421488	5.466666667	358	0.739669421	4.211764706	44	0.090909091	5.5
Safety	Blocks harmful information.	463	4.287037037	74	0.159827214	4.933333333	347	0.749460043	4.082352941	42	0.090712743	5.25
Safety	Avoids unsafe or inappropriate talks.	441	4.083333333	53	0.120181406	3.533333333	346	0.784580499	4.070588235	42	0.095238095	5.25
Resilience	Resumes tasks after long inactivity.	390	3.611111111	54	0.138461538	3.6	303	0.776923077	3.564705882	33	0.084615385	4.125
Anthropomorphism	Mimics human emotions and understanding.	363	3.361111111	52	0.143250689	3.466666667	295	0.812672176	3.470588235	16	0.044077135	2
Anthropomorphism	Mirrors human emotional responses.	353	3.268518519	42	0.11898017	2.8	281	0.796033994	3.305882353	30	0.084985836	3.75

Statements

Accuracy

- 1. Gives clear answers to vague questions.
- Lets me verify its answers.
- 3. Checks its own answers carefully.

Objectivity

- 1. Provides impartial decisions and advice.
- 2. Doesn't favor any group or view.
- 3. Answers using only facts and logic.

Safety

- 1. Warns about risky answers.
- Blocks harmful information.
- 3. Avoids unsafe or inappropriate talks.

Reliability/Robustness

- 1. Adapts well to unexpected data.
- Works well under various conditions.
- 3. Handles errors without major disruptions.

Security

- 1. Guards against online cyber-attacks.
- 2. Protects my personal data from hackers.
- 3. Assesses and prevents spread of misinformation.

Accountability

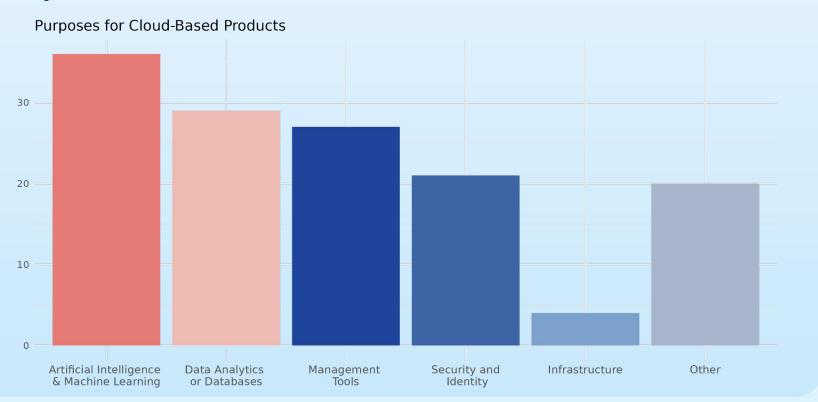
- Follows laws for Al-generated content.
- 2. Allows me to report its malfunctions.
- 3. Is overseen by a responsible authority.

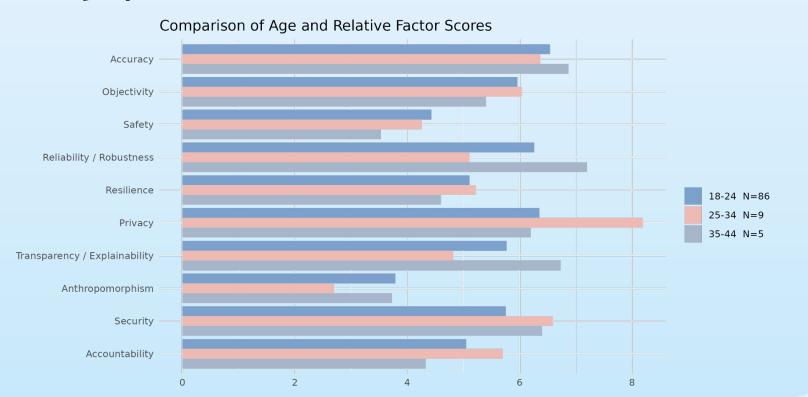
Resilience

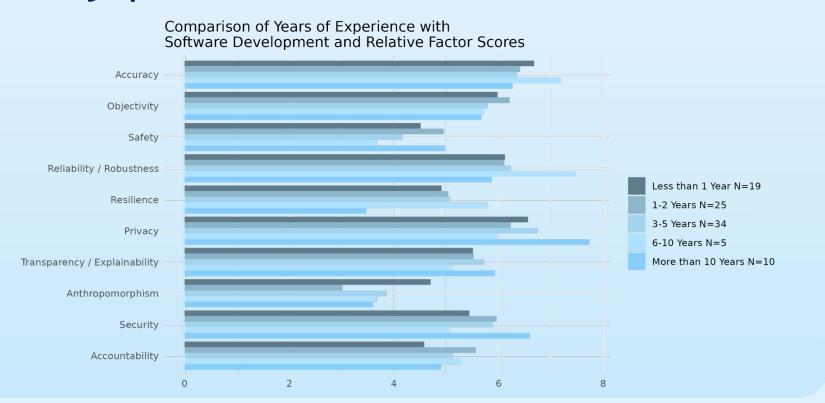
- 1. Works well during high-demand times.
- Resumes tasks after long inactivity.
- 3. Corrects errors quickly when pointed out.

Explainability/Transparency

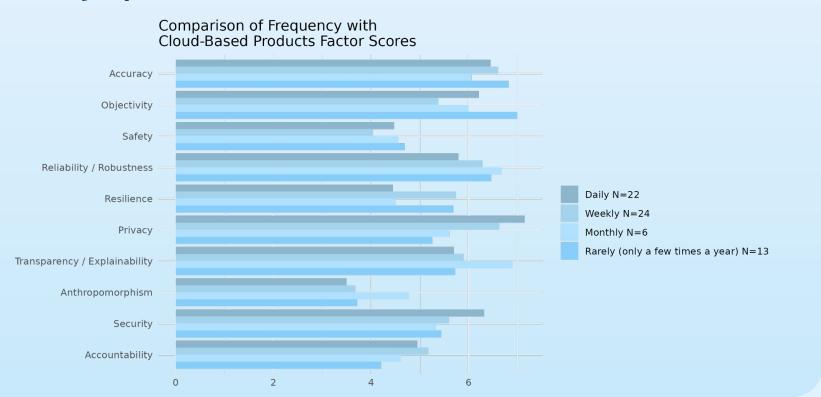
- Shares its training goals and processes.
- 2. Shows step-by-step solution breakdown.
- 3. Translates technical terms to simple language.


Privacy


- Asks for my consent before data collection.
- 2. Keeps my interactions confidential.
- . Lets me manage and delete my data.


Anthropomorphism

- Mimics human emotions and understanding.
- 2. Makes judgments similar to human ethics.
- 3. Mirrors human emotional responses.


Purposes for Cloud-Based Products

